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Recent numerical calculations of the evolution of resistive tearing modes have been central 
to the understanding of MHD activity and disruptions in tokamaks. The nonlinear three- 
dimensional initial value computer code RSF has provided many of these results. RSF 
assumes cylindrical geometry with a Fourier series representation in the two periodic coor- 
dinates and a finite difference representation in the radial direction. This choice makes RSF 
considerably more accurate and efficient than previous codes. 

1. INTRODUCTION 

The tokamak has emerged as one of the most promising magnetic confinement 
devices for achieving controlled nuclear fusion. Tokamak plasmas exhibit a variety of 
large scale oscillations and instabilities [ 11. These range from ones which limit the 
plasma density or confinement time, to major disruptions which violently terminate 
the discharge and possibly damage the device. It is important for the design and 
operation of future devices to understand these plasma instabilities, especially the 
major disruptions. Over the last few years, resistive magnetohydrodynamic (MHD) 
calculations have produced a wealth of results [2-171 which have contributed 
substantially to the understanding of many of these features of tokamak discharges. It 
has even been possible to suggest ways of controlling some of the most serious 
plasma disruptions [ 13j. 

The resistive MHD equations, when linearized about an equilibrium, exhibit 
exponential solutions [ 181 which are driven by the gradient of the toroidal current 
density. They are called tearing modes because the flux surface topology is torn. 
However, nonlinear effects become important before the linear solutions are large 
enough to be experimentally measurable. The nonlinear evolution can be studied by 
solving the resistive MHD equations as an initial value problem. If the initial 
condition is that of an unstable equilibrium plus a small perturbation, then the time 
integration of the p.d.e.‘s will first exhibit the growth rates and eigenfunctions of the 
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fastest growing solutions of the linearized equations. If several modes are unstable 
and if they have different pitches, then a three-dimensional calculation is require 
the nonlinear phase. Calculations of this type have yielded results which are 
qualitatively distinct from the 2D results. 

It is necessary to simultaneously follow phenomena on two time scales; rHP, the 
transit time of an Alfvin wave in the poloidal direction; and z,., the resistive diffusion 
time of the plasma. Unfortunately, in present day tokamaks the ratio of these times is 
very large, 

r,/z, E s - 105 - lo*, 

and it may be even larger for reactor sized devices. 
In order to understand and verify these calculations, it is necessary to clearly 

separate rHpr r,, and the intermediate timescale characteristic of the tearing mode 
growth rate (S1’3rHP or S”‘r, depending on the symmetry of the solution). This leads 
one to require that S to the fractional power be quite large in order to distinguish the 
phases and timescales of the problem in a numerical calculation. For example, it is 
known [ 191 that the exponential growth phase is followed by a nonlinear phase 
characterized by slower algebraic growth. It is important to show that, in certain 
cases, faster growth can return after a well-established period of slow algebraic 
growth. This is not possible for S 2 10’ because the algebraic growth does not have 
sufficient time to become clearly established. When studying the later phases of a 
plasma disruption at high S, it can enter a state in which the energy is no longer 
confined to long wavelength modes. This.does not happen at low values of S and, in 
fact, for S 5 lo4 some modes which are unstable at high S become stable. Also, at 
low S, the p = 1 helicity (described later) saturates, while at high S, it reconnects. 
For these reasons, we conclude that low S calculations are an inappropriate approach 
for understanding phenomena which occur at S - 106. On the other hand, for S -+ co 
the equations become singular [ 181. Therefore, at high values of S the spatial 
structure of the solutions becomes quite small, requiring a numerical scheme capa 
of resolving short wavelengths in the minor radius direction. These requirements of 
disparate timescales and fine radial mesh imply that such calculations are time 
consuming even on the fastest computers available today. Consequently, exe~~t~o~ 
efficiency is an important issue for any such code. 

This paper primarily describes the techniques used in the code &S-F, which was 
designed with the above conditions in mind, It uses a Fourier series expansion in two 
periodic coordinates, and a finite difference grid in the third. Its results and perfor- 
mance are also compared with a less efficient and less accurate three-dimensional 
code RS3 [IQ], and with an earlier two-dimensional code MASS [4]. Both of these 
codes use a finite difference technique. Results obtained with RSF have been exten- 
sively reported elsewhere [ 1 I-151, so the ones included here are merely to ill 
the capabilities of the code. An extensive review of other initial value resistive 
calculations has been made by Schnack [20]. 

In Section 2 the equations and initial and boundary conditions are described. The 
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numerical schemes of MASS and RS3 are briefly described in Sections 3.1 and 3.2. 
Then in Section 3.3 a detailed description of RSF is given. In Section 4, a comparison 
of these codes is made. 

2. THE EQUATIONS 

The full resistive MHD equations [lo] (Ampere’s law, Faraday’s law, momentum 
balance, Ohm’s law, equation of state, mass continuity and resistivity evolution) can 
be considerably simplified [ 10,211 by the application of two assumptions. 

The first assumption is standard tokamak (inverse aspect ratio) ordering. That is, 

where 

Here a is the minor radius and R, is the major radius of the torus. A cylindrical 
coordinate system (r, 0, 5) is employed, where r (0 < r < a) is the minor radius, 0 
(0 ,< I!.< 27r) is the poloidal angle, and 4 (0 < 5 < 27~) is the toroidal (or longitudinal) 
angle. In the circular cylinder limit only terms of order so are retained and the cross- 
sectional shape of the plasma is assumed circular. This ordering has the important 
effect that the time variation of the toroidal magnetic field, B,, can be ignored and, 
consequently, the fastest time scale of the equations, the time for the propagation of 
AlfvCn waves across the magnetic field, is removed from the dynamics. The fastest 
timescale remaining in the equations is rHP = R,/VA, the time for Alfvin waves to 
propagate along the magnetic field. The slow timescale is the resistive skin time 
z, z a ‘p&j. 

The second assumption is to consider only a low /I plasma, where p is the ratio of 
plasma pressure to magnetic field pressure. Specifically, p - e2 is assumed. This is 
valid for most ohmically heated tokamaks. 

This deliberate strategy of aiming first for efficient nonlinear, 3D, high S 
calculations while dropping toroidal, noncircular and finite p effects has born fruit. 
Even though the equations are greatly simplified, they contain the essential physics. 
The calculations have given quantitative agreement with a wide range of experimental 
observations. 

The above assumptions yield two scalar partial differential equations which in 
dimensionless form are [lo] 

DY a@ 
-=vJ~-~-EF 

Dt 

and 
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Y is the poloidal flux function (normalized to Q*BJ defined by 

D a 
__ is the convective derivative - $ v, s 
L)t at 

v is the fluid velocity in units of a/r,, 
i denotes perpendicular to [, 
q is the resistivity normalized to unity at the magnetic axis, 
J, = V: yl is the toroidal component of the 
plasma current density normalized to F,R,/B~~~ 
Q, is the velocity stream function, vI = V@ x & 
“P is the equilibrium toroidal electric field at the wall, 
U = V: @ is the toroidal vorticity. 

Most of these field quantities (Y, Jc, @, U, BI and VJ are functions of r, 0, 1; and t. 

Except in Ref. [ 151, where the electron heat conduction equation is used to dete~rni~~ 
the resistivity q, it is assumed that 

This removes from the equations the resistive decay of the plasma. The electric field 
is taken as constant over the wall. The subscript “o” denotes an equilibrium qu 
and “m” will be used to denote the nonequilibrium ~‘pert~rbed”) portion of a field 
quantity, for example, 

These equations are in dimensionless form. Lengths have been normalized to the 
minor radius, a; and the time to r,. 

2.1. Initial Conditions 

The reduced equations (l), (2) have nontrivial, velocity-free equilibrium solutions 
for which the field quantities depend only on r. Under these conditions, the r.hs. of 
Eq. (2) is zero, implying that the vorticity does not evolve. If the velocity is zero, t 
Q0 = 0. Since Ey cancels with vJ,, by definition, the r.h.s. of Eq. (I) is also zero. 

Since this implies that !PO does not evolve, and consequently J,, does not evolve, any 
such solution is an equilibrium. Equations (1) and (2) become 
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and 

Go = u, = 0. 

To specify an equilibrium, it is only necessary to specify the equilibrium poloidal 
flux YOU,(r). However, it has instead been the practice to specify the safety factor q(r) 
and then calculate the flux from 

This approach is preferable because q(r) gives the positions of the resonance surfaces. 
At least a dozen different parameterizations for q(r) have been used, each one 

having from one to five independent parameters. These are useful for studying the 
systematic dependence of the evolution on the equilibrium. The most extensively used 
parameterization has been 

q(r) = q. [ 1 + (+,)** 1 1’AY 
where 

and qo, rO, 1, and 1: are input parameters. 
When profiles of the toroidal plasma current density or electron temperature are 

available from, e.g., transport code analyses of experimental conditions, these can be 
used to establish the q profile using 

or 

(6) 

In either case, the normalization is given by specifying q at the plasma boundary, 
which is directly related to the total plasma current. 

The usual initial condition is zero for the velocity-related fields 

(8) 

and an equilibrium plus a small perturbation for the poloidal flux 

4r, 0, C, 0) = ‘Y,(r) + F(r, 19, Z;), (9) 

where YJr) is given by Eq. (4). 
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To specify the perturbation it is useful to expand 

P(r, 0, i) = 2 [ Pmn(r) cos(m6 + 4) t Pm,(r) sin(m8 + n<)]. (101 
m,n 

Note that the equilibrium is (m = 0; n = 0) in character, so that y”,, = pm, and 
Pmn = Pmn except for PO0 = !PO + PoO. The solutions of Eqs. (1) and (2) when 
linearized about an equilibrium are characterized by m, n values. Thus, for an 
equilibrium which is unstable with respect to only the (m = 2; n = 1) mode, the 
quickest way to numerically approach the linear solution is to initialize 10-I for 
pZ1(r)) with a function which is qualitatively similar to the linear eigenfunction, e.g., 

Pm,(r) =- 7 c ) 2 ?(l - r) 2 rsqi 
rF(l -r,) 1 +e’“‘-‘+‘/‘s’ q(r,)2 ’ 

where rs is the resonant radius of the mode, given by 

4(r,) = m/n, 

The parameter W,, the initial magnetic island width, is used to control to size of the 
perturbation. 

Although RSF allows both the sine and cosine terms, in cases where only the 
cosine terms in Y are initialized, the sine terms in Y and the cosine terms in - 
remain zero as time evolves. In order to simplify the presentation here, only this latter 
situation will be discussed, therefore the superscripts “c” and “9’ will be dropped. 

The numerical solutions are independent of the initial perturbation if its size is 
sufficiently small. For a single helicity case, normally only one mode is perturbed. If 
the magnitude of the perturbation is sufficiently small that an eigenfunction emerges 
before the island width exceeds the tearing layer width, then the only role that the 
initial perturbation amplitude plays in the solution is to determine the zero of time, In 
multihelicity runs, normally two modes of differing pitch are perturbed. The solution 
then depends on the relative magnitudes of the two perturbations in a way which is 
well understood [ 151. 

2.2. Boundary Conditions 

The field quantities are assumed periodic in 0 and [. At the magnetic axis, r= 
ail scalar functions must be regular. Later, the implementation of this in the code 
RSF is discussed. 

The wall at r = 1 is assumed rigid, so v,(l) = 0. This implies that Q(l) is 
independent of 6. The constant electric field, Er, in Eq. (1) has been chosen such that 

@( 1, 8, r, t) = 0. (W 
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In Eqs. (1) and (2) Y contains an arbitrary additive constant, which allows us to 
set 

for constant voltage, or 

for constant current boundary condition. 
To study the effect of external feedback coils [ 131 it is necessary to modify the 

boundary condition of the mode subject to feedback, 

Y,,(l, e5, t> = Yeu,,,(Q, r, 4 

according to a prescription discussed in Ref. [13]. 
The energy conservation law for the reduced MHD equations is given by 

(14) 

where E, and sK are magnetic and kinetic energy. Thus, the rate of change of the total 
plasma energy is equal to the sum of the flux through the wall and the Joule heating. 
The quantity 

is used as a numerical test of energy conservation. It has proved useful to consider 
other approximate conservation laws, exact in the zero resistivity limit such as 
1 A ’ B dV, where A is the vector potential of the magnetic field, and s v . B dV. 

3. NUMERICAL SCHEMES 

It is necessary to integrate Eqs. (1) and (2) in time starting from a perturbed 
equilibrium. Three techniques to do this will be described in chronological order. The 
first two have been described elsewhere [6, lo], so only sufficient detail is given here 
to allow comparison with the technique used in code RSF. 

Lagrangian and partly Lagrangian schemes have been found useful for solving 
other fluid problems [22]. However, the driving terms in Eqs. (1) and (2) come from 
the magnetic field, so the analogous choice would be a finite difference grid which 
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evolves with the magnetic field. But this choice is excluded in resistive MI3 
the magnetic field topology changes due to the magnetic islands, and in some cases, 
the field lines wander stochastically. The most straig~tforw~d Eulerian coordinate 
system would be Cartesian, which has been applied in other circumstances j23, 24j. 
However, since at low resistivity the tearing layer is highly localized in terms of the 
magnetic flux coordinate, such a coordinate system provides the most accurate 
representation of the tearing layer. In circular cylinder geometry, the minor radius, r, 
is an equilibrium flux coordinate. Since, as stated above, the total flux does not 
provide a useful coordinate, an unequal-spaced finite difference grid in minor radius 
is the best choice. The following sections present different ways of ~e~~ese~ti~~ 
variations in 8 and [. 

3.1. Helical Symmetric Case 
The MASS code was developed by the joint effort of the resistive MHD groups in 

Princeton at the Princeton Plasma Physics Laboratory and the Institute for Advanced 
Studies 12, 4: 51. It was later modified and extensively used at ORNL [ 7, 9 f. It is 
summarily described here only to give better perspective to the other techniques. 

The terms in Eq. (10) can be grouped by helicity. If p = m/n, then the double sum 
can be restated 

(16) 

where p takes all rational values. If only perturbations of a single pitch (or helicity), 
p, are initialized, then, in cylindrical geometry, where the equilibrium is (m = 0; 
n = 0), other helicities are never generated. The problem is thus reduced to two 

spatial dimensions, r and 19, ~p8 + <. 
The MASS code was developed to study these single helicity cases It blazed a 

crucial role in analyzing both linear and nonlinear behavior of tearing modes. It was 
used to study the p = 1 helicity as a model for sawtooth oscillations [7]. calculations 
for other helicities (p # 1) show a period of exponential growth followed by 
saturation of the perturbation giving a new stable ~onaxisymmet~ic final state. 
S is large (-106), there is a well-defined period prior to island saturation in whi 
perturbation slows from exponential growth to algebraic growth. Tlnis numerically 
supports the result of Rutherford [19]. 

The MASS code uses a finite difference formulation on a 2D polar grid in r and 
U,. Because of symmetry, it is only necessary to employ a segment of the grid such 
that 

However, to get answers which are even qualitatively good can require about 263 grid 
points in the 0, direction (Figs. 1 and 2). 
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--- N=B 
- N = 24 ! 

0 0 01 002 003 004 
TIME / rR 

FIG. 1. The island width, W, is shown as a function of time (a) for the MASS code with 8 and 24 
points in the 0, grid. This is a typical p = 2 saturating island. When the grid is too coarse (N = 8) there 
is a severe overshoot in island width. As N is increased, the MASS code results approach the RSF 
results. In the coarse grid case, N = 8, the time derivative of the width (b) considerably exceeds the 
estimate which comes from a d’ calculation. 

The MASS code cannot correctly calculate the evolution of equilibria which are 
strongly unstable to more than one helicity since it does not include any nonlinear 
effects between modes of unequal helicity. A three-dimensional code, RS3, was 
developed to study these effects. 
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FIG. 2. The maximum absolute value of the amplitude of Y,,,, is plotted as a function of N for the 
single helicity p = 2 MASS code runs shown in Fig. 1. The values shown were taken at a time 
corresponding to the peak in the island width. For the coarse grid run (IV= 8), the higher IZ modes are 
poorly resolved resulting in anomalously large values of 1 ul,,]. 

3.2. Cylindrical Finite Difference Grid Technique 
The generalization to three dimensions to allow for the interaction of different 

helicities was accomplished in RS3 by replacing the polar grid of the MASS code 
with a full cylindrical grid. In cases where only one heiicity is unstable or in which 
the unstable modes saturate at a sufficiently low level, RS3 duplicates the results of 
the MASS code. However, when more than one mode is unstable, and when t 
single helicity saturation amplitudes are sufficiently large, the behavior departs from 
a superposition of single helicity solutions, and a qualitatively different solution is 
found. 

From linear tearing mode theory [ 181, it is known that the resistivity plays a. role 
only inside the tearing layer, which is a very narrow region surrounding the singular 
radius. The tearing layer width sT is proportional to S-z’5. One expects, therefore, 
that a very fine radial grid is required, at least in the vicinity of the singular surfaces 
of unstable modes. In addition to this, the 9 and 5 grids must be tine, not only to 
support a sufficient number of m and PZ values, but also to minimize a sensitive form 
of truncation error. Consider any function of the form 
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The finite difference first derivative on an equal-spaced grid is given by 

w - = -n[ 1 - (n ~l<)~/6] sin(m8 + 4) + O((&J4) 
SC 

and similarly for the d-derivative. 
The discretization error, 

occurs in any term with a [ or 8 derivative. These factors reduce the contribution of 
the higher modes in such terms. The solutions are particularly sensitive to driving 
terms of the form 

Such terms should go to zero at the resonant surface where q = m/n. This will be the 
case if the grid is chosen such that 

m eff 
~ = 4, 

%ff 
(21) 

which implies that n ,4c = m A& Even the elimination of this part of the discretization 
error is only effective for a single helicity at a time, and the discretization error still 
appears in some nonlinear terms. In order to overcome these problems and the fact 
that RS3 is too slow to be useful in systematic studies, RSF was written. 

3.3. Fourier Series Expansion Technique 
To overcome the limitation due to discretization in the 0 and < directions, RSF is 

designed to use a Fourier series expansion in these two directions. Each of the field 
quantities is expanded as in Eq. (IO), a finite set of terms is retained, and the 
amplitudes of each mode are discretized on an unequally spaced grid in minor radius 

lYm,(r) -+ !Pm,(rj) j: I,..., J. 

RSF has confirmed, with greater efficiency, the multiple helicity results of RS3 
(Fig. 3) and the single helicity results of the MASS code (Fig. 1). 

As long as the solution is dominated by a moderate number of (m; n) modes, this 
representation is considerably more natural and economical than grids in B and [. 
This certainly holds in the early stages of a calculation where very low mode 
numbers dominate. In the later stages of some multihelicity calculations short 
wavelength components of the solution become important. Beyond a certain point, 
both finite difference and finite series representations become inadequate. 
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FIG. 3. In the nonlinear regime, the instantaneous growth rate of the (m = 3; n = 2) mode exhibits a 
strong peak just after the p = 3/2 island overlaps with the p = 2 island. There is rough quantitative 
agreement between RS3 and RSF through this phase of the calcuiation. 

3.3.1. Equations. As in Ref. [lo], a two-step algorithm is prsposed: 

Gil+At= U’SAtS,, wc> 

!PtiAt = P + At s,. (22dj 

The four source terms, Si, are determined from Eqs. (1) and (2) with the constraints 
that 

(1) S, and S, are evaluated at t + At/2 to give a second order accurate 
timestep. This gives a controllable global error of or 
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(2) All nonlinear terms are evaluated explicitly to avoid solving very large 
matrix problems. 

To determine the best time-level for evaluating the terms in S, and S,, a numerical 
stability analysis is performed. As was done in Ref. [6] for the MASS code, the 
equations are first linearized. The condition is imposed that a short wavelength 
solution not be allowed to grow. If both S, and S, are evaluated at time t, then the 
numerically stable timestep is controlled by radial grid spacing. Since dense radial 
grids are needed, this restriction is very costly. This can be avoided by taking the qJ, 
term in S, at t + h/2. Numerical tests have confirmed this. 

The result is 

-s2 $ -rv,J:+q$J: 
I L I 

- v, !P -g Jc* 

+ v, !Pv,.7; - v,.q v, !F 
I 
) 

s, = ; v, CD’ - $ CD’ + q.pAf/= - v, !i%v, dsf + v, !m, @‘, 

s, = v @t+U2ve Ut+Aff2 _ v, q,t+WvrJW2 I 
1 - 9 - 

! [ 
-,.v 

4 
Jf+Af/= + 9$$A”2 e I 

I 

s, = f v, @+W _ $ qjt+AU= + v~tAU2 

_ v $W"2ve~tt"Y2 + v, ~tt+At12vrdjt+AU2, 
r 

where 

and 

(23) 

(24) 

(26) 

(27) 

WV 

and where 
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and 

Each of the field quantities in Eqs. (22)-(28) (U, Cp, f<, fl is then expanded as in 
Eq. (10). Each equation is multiplied by cos(m0 + n[) or sin(m6 + n<) and integrated 
with respect to B and c. This has the effect of projecting out a single mode on the left- 
hand side of Eq. (22). The mode numbers for linear source terms agree with the 
q,uantity being advanced, e.g., 

yt+W _ yt 
mn mn = 

At/2 
&P;n + f’. . 
4 

If a total of L modes are included in the calculation, then in each half of the step, 
there are 2L equations to be advanced. Each of the 12 nonlinear terms becomes a 
convolution of amplitudes, e.g., 

where F is a sparse matrix whose elements have values $1, 0. 
For each timestep, three tridiagonal matrix problems must be solved: 

for @’ using Eq. (27), 
for !Pyt+Ad2 (due to the r?<+Au2 term) in Eq. (24), 
for @t+AU2 using Eq. (27). 

These are not a very time-consuming part of the timestep. 
In RSF, Eqs. (22)-(28) are solved using the boundary conditions stated earlier. It 

has not been necessary to employ any techniques to suppress numerical difficulties. 
Except in the most pathological cases, the code has performed quite accurately. In 
cylindrical geometry the origin (Y = 0) can sometimes be numerically difficult to 
treat. Such difficulties are avoided here because all functions are scalar (rather than 
vector or tensor) fields, and because regularity at the origin is particularly easy to 
impose in terms of individual modes. For m f 0 Components, the scalar facetious 
must go to zero at r = 0. For m = 0 components, the first derivative with respect to r 
must vanish at r = 0. 

The entire calculation is carried out in terms of the modes (Ym,, U,, 9 etc.). 
Fourier transformations back to (r, t9, c)-space are used only for generating certain 
types of output, never in the solution of the partial differential equations themselves. 

3.3.2. Choice of Modes. Cases in which only a single mode is initially perturbed 
are called single helicity cases. This is due to the fact that the nonlinear terms 
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generate only modes of the same helicity, p = m/n, as the perturbed mode. Thus, 
Eq. (10) reduces to 

It is necessary to truncate the series at some finite value IZ = N. Single helicity 
calculations have two general types of nontrivial solutions. In saturation cases, the 
solution goes to a time-independent final state in such a way that the magnitudes of 
the amplitudes drop off rapidly with rz at all times during the calculation [9]. The 
second class of single helicity cases, where magnetic reconnection occurs, results in a 
time-independent final state dominated by the (m = 0; IZ = 0). However, during part 
of the evolution, it is necessary to include a substantial number of modes. In either 
case, the number of modes required in RSF is considerably smaller than the number 
of grid points required in the MASS code (Figs. 1 and 4). 

For multihelicity cases, in which modes of unequal helicity are perturbed, the 
choice of modes is not so simple. One could argue that the only criterion should be to 
keep modes of long wavelength. This suggests a condition such as 

or perhaps 

n<N and m<M (314 

n*+m*<M*+N*. (3 lb) 

Experience has shown that these are very inefficient choices because they include 
many unimportant modes. There is a tendency for the modes which are not resonant, 
for which p = m/n does not equal q(r) anywhere in the plasma, to be unimportant. 
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FIG. 4. Single helicity (m/n = 2) case. The time dependence of the island width converges rapidly 
with the number of modes in RSF. The solid, dot-dashed, and long dashed curves correspond to the 
mode selections O/O 2/l 412 (L = 3), O/O 211 412 613 (L = 4), and O/O 2/l 412 613 814 (L = 5), respec- 
tively. The short dashed line is the MASS code result with MI = 24. 
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During the early stages of evolution the one or two modes which are linearly unstable 
completely dominate. Considering this, an ad hoc ordering scheme has been devised 
which can be used to determine an efficient choice of modes. Consider a case in 
which the (m = 2; n = 1) and (m = 3; IE = 2) modes are linearly unstable, and with 
the (m = 2; N = 1) significantly larger than the (m = 3; n = 2) mode throl~gho~~ the 
calculation. Assume that 

and 

where 6 is a small parameter. 
When two modes interact, they directly generate modes which have mode numbers 

which are the sum and difference; 

(m, ; n,) and (m, ; nJ directly 

generate (m, + m,; n, + nJ and (m, - m2; n, - nZ). 

This leads to the following ordering 

WO): yo,o 
Q(@>: y2.1 
W2): Y;,2 ul,,, 
W3): PI,, Y&3 Y6,3 

W4): *Lo Y6.4 y7,4 ul,,4 

WS): y3,, ul,,, ul,,, y9,5 y”lO.5 
‘@): y2,2 ul,,, ul,,6 ‘IO,6 ‘11.6 yv,2,6 
OV’): ul,,l y7,3 ul,s Yll,’ 12,7 IF” yy14.7 13.7 

It is natural to truncate this series at some order, thus choices of 7, 11, 16, 22 or 29 
modes are reasonable. Runs have been made with up to 19 modes. 

Although “‘ordering pyramids,” like that above, have been remarkably successful in 
predicting the modes which are important for numerical calculations, they in no way 
constitute a proof that other modes are not important. This must be tested by rn~~~~~ 
runs with different selections of modes. 

To produce Fig. 5, the modes O,<n < 5, 0 <,<m < 5 were used. The m 
energy of each mode was determined late in the run. Modes for which --log 
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FIG. 5. For a 36 mode RSF case, the magnetic energy is plotted as a function of “order.” “Order” 
has been assigned to the 36 modes according to three different ad hoc schemes. In (a) there is the 
strongest correlation between “order” and magnetic energy. In (c) the “order” is a very poor predictor of 
the importance of a mode. 
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FIG. 6. The solution obtained with RSF converges rapidly as the number of modes is increased. 
Modes here were based on the ordering pyramid in the text. In this type of multihelicity run, smaller 
wavelengths become important as time goes on. Thus, the addition of more modes merely postpones the 
onset of numerical error. 
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large are relatively unimportant. Each of the 36 modes is assigned an order accordion 
to three different schemes: 

(a) the ordering pyramid above; 
(b) as above, but assuming ul,,, = O(6l) and modifying the pyramid accor- 

dingly; 
(c) setting the order to min(m, n). 

The whole purpose of the ordering scheme is to have a reasonably good predictor of 
mode importance. Figure 5 shows that for this case scheme (a) is the best predictor of 
mode size. Scheme (b) is slightly worse, and scheme (c) shows only slight correlation 
between order and mode size. When the ordering pyramid is employed, the 
convergence of the solution with number of modes is rapid (Fig. 6). 

With RSF it is possible to exclude individual modes selectively in order to assess 
their importance. This facility has proved useful in understanding major disr~~ti~~ 
cases [ 151. In a pure finite difference scheme, such as RS3, this technique carat be 
used. RSF also has the advantage that the linear behavior of high numbered modes 
can be studied inexpensively and accurately. 

When the n values of the modes in a calculation are multiplied by a positive 
integer, 1, and q -+ q/I, then the solutions are unchanged. This is a necessary property 
for the solutions to possess and has provided a check against certain programing 
errors. 

3.3.3. Convolution. Each timestep requires 12 convolutions (Eq. (29)). This is 
the most time-consuming part of the calculation. If the total number of modes is k 
and the number of radial grid points is J, then, for each of the I2 convolutions there 
are L x J possible left-hand sides. For each of these, the summation will have on the 
order of L nonzero terms. Since each calculation requires a large number (-I 
-10’) of timesteps, it is desirable to set up as much of the convolution as possible at 
the start of the run. Assume, in Eq. (29), that the derivatives have been done, giving 

(32) 
m’n’ 
m un I, 

where the summation includes only the terms chosen by the ordering scheme. 
Further, assume that the set of modes included in the run forms an ordered list: 

hi n,> 1 = 1, 2 )...) L. 

Each mode can be identified by an 1 subscript, rather tban the double m, n notation: 

R, = 1 F;,,,,G,,H,,,. 
I’,[” 
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At the start of a run two subscripts arrays (g and h) are prepared, allowing the 
convolution to take the form 

R, F= ,$ Gg,iH,,,i. 
i=l 

This technique avoids all of the zero contributions to the convolution. Unfortunately, 
this style of loop is very inefficient on the C&4 Y-l computer because it involves 
nonlinear subscripts. Since nearly all of the production running of RSF has been on a 
CRA Y-1, it is worthwhile to look for another way to do the convolution. Each of the 
field quantities is stored as, e.g., !Pjl, where j labels the grid point, and I labels the 
mode. Since the convolution operation must be done at each grid point, the j loop can 
be brought inside, giving 

Rj,= 5 GjgliHjhli* 
i=l 

This generates very 

3.3.4. Timestep. 

efficient vector code on the CRA Y-1. 

The numerical stability analysis referred to in Section 3.3.1 gives 
the timestep size for numerical stability 

2 
At, < SMax]n-m/q1 ’ (34) 

where the Max is over all (m; n) pairs in the calculation and over all values of q in 
the plasma. Runs with high values of m and n require a smaller timestep. This is 
analogous to the dependence on grid spacing in the MASS code and in RS3. 
However, the spacing in minor radius does not appear in Eq. (34) since the VlJs term 
is implicit. This is fortunate, since in many cases Ar 5 0.003. 

The initial timestep size is given as a fraction of At, so that the initial timestep is 
somewhat smaller than required by the stability analysis. As nonlinear effects become 
important, it sometimes proves necessary to reduce the timestep. A procedure for 
doing so during a run has been developed. It has a rather weak theoretical basis, but 
in practice it works quite well. When a numerical instability starts to grow, it can 
usually be, seen as a short wavelength oscillation in the modes. To detect the 
oscillation early in its development, it is advisable to look at a sensitive quantity. Js is 
more sensitive to the numerics than is Y since Jc is the second derivative of !P. Since 
<J,>oo is always present, we choose that component. In particular, whenever the 
number of oscillations (as a function of r) of (J&, increases, the timestep is reduced 
by a factor which is usually set to 0.8. There certainly are some cases in which this 
fails, usually by unnecessarily lowering the timestep, but in most.cases this procedure 
works well. 

A code, RSFMOL, has been developed.in which the above timestepping procedure 
is replaced with a method of lines technique [25]. Several standard ODE solvers 
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which determine their own timesteps have been invoked [26]. This appears to be an 
expensive technique which only pays for itself very late in a run where, using our 
standard technique, the timestep has been unnecessarily reduced. 

3.3.5. Grid. Tearing modes are localized in minor radius. This local~za~i~~ 
becomes more severe at high values of S and/or m. Our initial value codes allow a 
nonuniform grid to be specified. In single helicity cases, this can be put to significant 
advantage by placing a high density of points near the resonant surface. For 
multihelicity cases with many resonant surfaces the advantage is ~onside~ab~~7 
reduced. Often such runs are made with uniform grids. The finite difference formulas 
for first and second derivatives are 3-point formulas which take unequal spacing into 
account. 

3.3.6. Sources of Numerical Error. There are live sources of numerical error: 

(1) Truncation of the infinite sum of modes; 
(2) Truncation error due to the finite grid in r; 

(3) Truncation error due to finite timestep; 

(4) oundoff error; 
(5) Numerical instability. 

2.8 

2.4 

/ I 

-'/I 1 3/2 ili7*j5 

! 0  
-1.2 ' / . I I I I I I j / 1, 

0.34 0.38 0.42 0.46 0.50 0.54 

FIG. 7. The toroidal current density viewed across a plasma diameter (inset) exhibits fine scale 
oscillations. The radial grid must be chosen sufficiently fine to accurately resolve them. A close 
inspection shows that grid densities of the order of 200 radial points are suffkient. The oscillations are 
seen to be insensitive to the locations of grid points. 
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For single- or multihelicity cases in which islands saturate, convergence of the 
solution with respect to the number of modes, L, is very rapid (Fig. 4). Normally, the 
solution is well converged with about five modes per unstable helicity, showing that 
long wavelength behavior dominates throughout the evolution. In those particular 
cases where there is an interaction between different helicities, there is a transfer of 
energy from long wavelengths to shorter wavelengths which occurs at the very end of 
the calculation. This is apparent in Fig. 6, where it can be observed that when fewer 
modes are used, the solution breaks down sooner. This pattern holds for as many 
modes (79) as we have used. In any event, for a given number of modes, there is a 
time at which the calculation must be stopped. Presumably, the energy will continue 
to flow into shorter wavelengths. Eventually, the fluid model breaks down. If one 
wished to continue, then a different approach, suited to a turbulent configuration, 
would be needed. 

At small values of S (S = 104) 100 to 200 grid points are adequate while, at 
S N 106, 200 to 300 points are usually needed. This corresponds to dr 1: 1O-3 in the 
vicinity of important singular surfaces. It is necessary to run a case with at least two 
different grid sizes to verify the result. The inset in Fig. 7 shows the toroidal current, 
Jc, late in a run at S = IO’. An enlargement of the region with small wavelength 
oscillations shows that the spikes are real; they are well reproduced on two different 
grids. The magnetic island width of the (m = 3; n = 2) mode is rather sensitive to 
numerical error. It is plotted in Fig. 8 as a function of time for several grid sizes, 
again at S = 105. Convergence to the solution is quite evident. 

One test of the level of numerical dissipation has been to observe the dependence of 
linear growth rate on the level of resistivity, S [ 16, 271. The numerical dissipation is 
so small that the growth rate exhibits the theoretical value for S up to at least IO7 
when the radial grid is appropriately chosen, 

0.30 

FIG. 8. The p = 3/2 magnetic island width becomes independent of radial grid density for J 2 100. 
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Within the numerical stability constraint of Eq. (34), the timestep has been varied 
to see the effects of the finite difference expression for the time derivative. No detec- 
table effects have been seen. Evidently, numerical stability is a more restrictive 
constraint. 

RSF is normally run in single precision on the C Y-l. Floating point format 
uses 48 bits (14’ decimal digits) for the mantissa, There is a compiler option to 
select a shorter mantissa. This feature has been used to verify that roundoff error is 
insignificant. 

The control of numerical instability is accomplished in the ad hoc fashion 
described in Section 3.3.4. If the initial timestep is too large, there is a sharp onset of 
short wavelength numerical oscillations. It is presumed that the absence of such 
oscillations indicates the lack of significant numerical instability. 

4. COMPARISON OF CODES 

The reduced MHD Eqs. (1) and (2) have been solved with several different 
techniques by the authors. In their common region of validity, the nonlinear initial 
value codes, MASS, RS3, RSFMOL and RSF agree when properly converged. In 
turn, these results agree with linear growth rates and approximate saturation island 
widths obtained from d’ calculations (281. When only these two pieces of infor- 
mation are desired, the d’ calculation is the method of choice, since it is more 
efficient than the initial value techniques. Both techniques can be adapted to 
somewhat more general geometries [ 16,271. The d’ calculation provides a check of 
the linear growth rates in this situation and can also contribute to the understanding 
of the initial value results. Of the initial value codes, RSF is by far the fastest. The 
other codes are normally run only to verify the RSF results. 

5. CONCLUSIONS 

An efficient technique for solving the nonlinear reduced MHD equations has been 
developed. Using cylindrical coordinates, the functions are represented by Fierier 
series expansions in the two periodic coordinates and a finite difference grid in the 
third direction. This technique has been verified by comparison with earlier results 
and is more efficient and removes some inherent problems of the Unite difference 
method. It also has a larger domain of applicability which makes it possible to do 
systematic 3D nonlinear studies of the stability of plasmas to resistive MHD modes 
for low values of the resistivity. This approach also gives high flexibility to the 
calculations and allows the testing of different dynamical hypotheses by the 
convenient selection of modes. 
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